Enhanced Electrocatalytic Activity of Alloyed Palladium-Lead Nanoparticles toward Electrooxidation of Ethanol

Langmuir. 2021 Nov 9;37(44):13132-13140. doi: 10.1021/acs.langmuir.1c02324. Epub 2021 Oct 29.

Abstract

Although many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually. However, Pd3Pb NPs are obtained with the same molar ratio of Pd and Pb in the raw systems. Among all of the as-made NPs, Pd9Pb1 NPs exhibit superior catalytic activity (2620 mA mg-1) toward ethanol electrooxidation, 4.3 times higher than commercial Pd/C catalysts (613 mA mg-1). The overall rate of the EOR for PdPb NPs is determined, demonstrating that the electrocatalytic activity of the PdPb NPs increases at high catalytic temperatures, in high pH environments, and/or at high ethanol concentrations.