Genomic constitution, allopolyploidy, and evolutionary proposal for Cynodon Rich. based on GISH

Protoplasma. 2022 Jul;259(4):999-1011. doi: 10.1007/s00709-021-01716-z. Epub 2021 Oct 28.

Abstract

Polyploidy is the main mechanism for chromosome number variation in Cynodon. Taxonomic boundaries are difficult to define and, although phylogenetic studies indicate that some species are closely related, the degree of genomic similarity remains unknown. Furthermore, the Cynodon species classification as auto or allopolyploids is still controversial. Thus, this study aimed to investigate the genomic constitution in diploid and polyploid species using different approaches of genomic in situ hybridization (GISH). To better understand the hybridization events, we also investigated the occurrence of unreduced gametes in C. dactylon diploid pollen grains. We suggest a genomic nomenclature of diploid species as DD, D1D1, and D2D2 for C. dactylon, C. incompletus, and C. nlemfuensis, and DDD2D2 and DD2D1D1 for the segmental allotetraploids of Cynodon dactylon and C. transvaalensis, respectively. Furthermore, an evolutionary proposal was built based on our results and previous data from other studies, showing possible crosses that may have occurred between Cynodon species.

Keywords: Cytotype; Evolutionary history; Genomic analysis; Hybrid; Polyploidy; Unreduced gametes.

MeSH terms

  • Cynodon*
  • Genome, Plant / genetics
  • Genomics
  • In Situ Hybridization
  • Phylogeny
  • Polyploidy*