Identification of Terpenoids From Abrus precatorius Against Parkinson's Disease Proteins Using In Silico Approach

Bioinform Biol Insights. 2021 Oct 20:15:11779322211050757. doi: 10.1177/11779322211050757. eCollection 2021.

Abstract

Parkinson's disease (PD) is the second major neuro-degenrative disorder that causes morbidity and mortality among older populations. Terpenoids were reported as potential neuro-protective agents. Therefore, this study seeks to unlock the inhibitory potential of terpenoids from Abrus precatorius seeds against proteins involve in PD pathogenesis. In this study, in silico molecular docking of 5 terpenoids derived from high-performance liquid chromatography (HPLC) analysis of A. precatorius seeds against α-synuclein, catechol-o-methyltransferase, and monoamine oxidase B which are markers of PD was performed using Autodock vina. The absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) of the hits were done using Swiss ADME predictor and molecular dynamic (MD) simulation of the hit-protein complex was performed using Desmond Schrodinger software. Five out of 6 compounds satisfied the ADME/Tox parameters and showed varying degrees of binding affinities with selected proteins. Drimenin-α-synuclein complex showed the lowest binding energy of -9.1 kcal/mol followed by interaction with key amino acid residues necessary for α-synuclein inhibition. The selection of this complex was justified by its stability in MD simulation conducted for 10 ns and exhibited stable interaction in terms of root mean square deviation (RMSD) and root mean square deviation error fluctuation (RMSF) values.

Keywords: Parkinson’s disease; molecular docking; molecular dynamics simulations; terpenoids; α-synuclein.