Dispatched uses Na+ flux to power release of lipid-modified Hedgehog

Nature. 2021 Nov;599(7884):320-324. doi: 10.1038/s41586-021-03996-0. Epub 2021 Oct 27.

Abstract

The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites
  • Cell Membrane / chemistry
  • Cell Membrane / metabolism
  • Cryoelectron Microscopy*
  • Hedgehog Proteins / chemistry*
  • Hedgehog Proteins / metabolism*
  • Hedgehog Proteins / ultrastructure
  • Lipid Metabolism*
  • Membrane Lipids / chemistry
  • Membrane Lipids / isolation & purification
  • Membrane Proteins / chemistry
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Membrane Proteins / ultrastructure
  • Mice
  • Models, Molecular
  • Mutation
  • Sodium / metabolism*

Substances

  • Hedgehog Proteins
  • Membrane Lipids
  • Membrane Proteins
  • Shh protein, mouse
  • dispatched-1 protein, mouse
  • Sodium