The effects of sodium bicarbonate supplementation at individual time-to-peak blood bicarbonate on 4-km cycling time trial performance in the heat

Eur J Sport Sci. 2022 Dec;22(12):1856-1864. doi: 10.1080/17461391.2021.1998644. Epub 2021 Nov 21.

Abstract

The purpose of this study was to explore the effect of individualised sodium bicarbonate (NaHCO3) supplementation according to a pre-established individual time-to-peak (TTP) blood bicarbonate (HCO3-) on 4-km cycling time trial (TT) performance in the heat. Eleven recreationally trained male cyclists (age: 28 ± 6 years, height: 180 ± 6 cm, body mass: 80.5 ± 8.4 kg) volunteered for this study in a randomised, crossover, triple-blind, placebo-controlled design. An initial visit was conducted to determine TTP HCO3- following 0.2 g.kg-1 body mass (BM) NaHCO3 ingestion. Subsequently, on three separate occasions, participants completed a 4-km cycling TT in the heat (30 degrees centigrade; °C) (relative humidity ∼40%) following ingestion of either NaHCO3 (0.2 g.kg-1 body mass), a sodium chloride placebo (0.2 g.kg-1 BM; PLA) at the predetermined individual TTP HCO3-, or no supplementation (control; CON) . Absolute peak [HCO3-] prior to the 4-km cycling TT's was elevated for NaHCO3 compared to PLA (+2.8 mmol.l-1; p = 0.002; g = 2.2) and CON (+2.5 mmol.l-1; p < 0.001; g = 2.1). Completion time following NaHCO3 was 5.6 ± 3.2 s faster than PLA (1.6%; CI: 2.8, 8.3; p = 0.001; g = 0.2) and 4.7 ± 2.8 s faster than CON (1.3%; CI: 2.3, 7.1; p = 0.001; g = 0.2). These results demonstrate that NaHCO3 ingestion at a pre-established individual TTP HCO3- improves 4-km cycling TT performance in the heat, likely through enhancing buffering capacity.Highlights This is the first time NaHCO3 ingestion has been shown to improve 4-km cycling TT performance in conditions of high ambient heat.A smaller dose of NaHCO3 (0.2 g.kg-1 BM) is ergogenic in the heat, which is smaller than the dose typically ingested for sports performance (0.3 g.kg-1 BM). This is important, as gastrointestinal discomfort is typically lower as the dose reduces.This study suggests that the individualised time-to-peak HCO3- ingestion strategy with lower doses of NaHCO3 is an ergogenic strategy in conditions of high ambient heat.

Keywords: Alkalosis; buffering; environmental physiology; supplements; track cycling.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Athletic Performance*
  • Bicarbonates / pharmacology
  • Double-Blind Method
  • Hot Temperature
  • Humans
  • Male
  • Polyesters
  • Sodium Bicarbonate* / pharmacology
  • Young Adult

Substances

  • Sodium Bicarbonate
  • Bicarbonates
  • Polyesters