Bringing Electrochemical Three-Dimensional Printing to the Nanoscale

Nano Lett. 2021 Nov 10;21(21):9093-9101. doi: 10.1021/acs.nanolett.1c02847. Epub 2021 Oct 26.

Abstract

Nanoscale 3D printing is attracting attention as an alternative manufacturing technique for a variety of applications from electronics and nanooptics to sensing, nanorobotics, and energy storage. The constantly shrinking critical dimension in state-of-the-art technologies requires fabrication of complex conductive structures with nanometer resolution. Electrochemical techniques are capable of producing impurity-free metallic conductors with superb electrical and mechanical properties, however, true nanoscale resolution (<100 nm) remained unattainable. Here, we set new a benchmark in electrochemical 3D printing. By employing nozzles with dimensions as small as 1 nm, we demonstrate layer-by-layer manufacturing of 25 nm diameter voxels. Full control of the printing process allows adjustment of the feature size on-the-fly, printing tilted, and overhanging structures. On the basis of experimental evidence, we estimate the limits of electrochemical 3D printing and discuss the origins of this new resolution frontier.

Keywords: additive manufacturing; electrodeposition; meniscus-confined; metal printing; nanopipette.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Conductivity
  • Electrochemical Techniques
  • Electronics*
  • Printing, Three-Dimensional*