Diversification of Ferredoxins across Living Organisms

Curr Issues Mol Biol. 2021 Sep 30;43(3):1374-1390. doi: 10.3390/cimb43030098.

Abstract

Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.

Keywords: Archaea; Bacteria; Eukarya; domains of life; evolution; ferredoxins; iron-sulfur proteins; lateral gene transfer.

MeSH terms

  • Archaea / classification
  • Archaea / genetics
  • Bacteria / classification
  • Bacteria / genetics
  • Computational Biology / methods
  • Databases, Genetic
  • Eukaryota / classification
  • Eukaryota / genetics
  • Evolution, Molecular
  • Ferredoxins / chemistry*
  • Ferredoxins / classification
  • Ferredoxins / genetics*
  • Genetic Variation*
  • Phylogeny
  • Species Specificity

Substances

  • Ferredoxins