Phase-Tunable Synthesis and Etching-Free Transfer of Two-Dimensional Magnetic FeTe

ACS Nano. 2021 Dec 28;15(12):19089-19097. doi: 10.1021/acsnano.1c05738. Epub 2021 Oct 26.

Abstract

Two-dimensional (2D) Fe-chalcogenides (e.g., FeS, FeSe, and FeTe, etc.) have sparked extensive interest due to their rich phase diagrams including superconductivity, magnetism, and topological state, as well as versatile applications in electronic devices and energy related fields. However, the phase-tunable synthesis and green transfer of such fascinating materials still remain challenging. Herein, we develop a temperature-mediated chemical vapor deposition (CVD) approach to grow ultrathin nonlayered hexagonal and layered tetragonal FeTe nanosheets on mica substrates, with their thicknesses down to ∼2.3 and ∼4.0 nm, respectively. Interestingly, we have observed exciting ferromagnetism with the Curie temperature approaching ∼300 K and high conductivity (∼1.96 × 105 S m-1) in 2D hexagonal FeTe. More significantly, we have designed a swift, high-efficiency, and etching-free method for the transfer of 2D FeTe nanosheets onto arbitrary substrates, and such a transfer strategy enables the cyclic utilization of growth substrates. These results should propel the further development of phase-tunable synthesis and green transfer of 2D Fe-chalcogenides, as well as their potential applications in spintronic devices.

Keywords: FeTe; chemical vapor deposition; etching-free transfer; phase-tunable synthesis; room temperature ferromagnetism.