Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development

Natl Sci Rev. 2019 May;6(3):480-493. doi: 10.1093/nsr/nwz043. Epub 2019 Mar 27.

Abstract

Brain size and cognitive skills are the most dramatically changed traits in humans during evolution and yet the genetic mechanisms underlying these human-specific changes remain elusive. Here, we successfully generated 11 transgenic rhesus monkeys (8 first-generation and 3 second-generation) carrying human copies of MCPH1, an important gene for brain development and brain evolution. Brain-image and tissue-section analyses indicated an altered pattern of neural-cell differentiation, resulting in a delayed neuronal maturation and neural-fiber myelination of the transgenic monkeys, similar to the known evolutionary change of developmental delay (neoteny) in humans. Further brain-transcriptome and tissue-section analyses of major developmental stages showed a marked human-like expression delay of neuron differentiation and synaptic-signaling genes, providing a molecular explanation for the observed brain-developmental delay of the transgenic monkeys. More importantly, the transgenic monkeys exhibited better short-term memory and shorter reaction time compared with the wild-type controls in the delayed-matching-to-sample task. The presented data represent the first attempt to experimentally interrogate the genetic basis of human brain origin using a transgenic monkey model and it values the use of non-human primates in understanding unique human traits.

Keywords: MCPH1; brain development; cognition; human evolution; neoteny; transgenic monkey.