Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting

Natl Sci Rev. 2020 Sep 14;8(9):nwaa234. doi: 10.1093/nsr/nwaa234. eCollection 2021 Sep.

Abstract

Photosynthesis in nature uses the Mn4CaO5 cluster as the oxygen-evolving center to catalyze the water oxidation efficiently in photosystem II. Herein, we demonstrate bio-inspired heterometallic LnCo3 (Ln = Nd, Eu and Ce) clusters, which can be viewed as synthetic analogs of the CaMn4O5 cluster. Anchoring LnCo3 on phosphorus-doped graphitic carbon nitrides (PCN) shows efficient overall water splitting without any sacrificial reagents. The NdCo3/PCN-c photocatalyst exhibits excellent water splitting activity and a quantum efficiency of 2.0% at 350 nm. Ultrafast transient absorption spectroscopy revealed the transfer of a photoexcited electron and hole into the PCN and LnCo3 for hydrogen and oxygen evolution reactions, respectively. A density functional theory (DFT) calculation showed the cooperative water activation on lanthanide and O-O bond formation on transition metal for water oxidation. This work not only prepares a synthetic model of a bio-inspired oxygen-evolving center but also provides an effective strategy to realize light-driven overall water splitting.

Keywords: bio-inspired; lanthanide-transition metal cluster; oxygen-evolving center; photocatalytic overall water splitting; synergistic effects.