Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene

Natl Sci Rev. 2020 Aug 31;8(9):nwaa220. doi: 10.1093/nsr/nwaa220. eCollection 2021 Sep.

Abstract

The thermal conductivity of two-dimensional materials, such as graphene, typically decreases when tensile strain is applied, which softens their phonon modes. Here, we report an anomalous strain effect on the thermal conductivity of monolayer silicene, a representative low-buckled two-dimensional (LB-2D) material. ReaxFF-based molecular dynamics simulations are performed to show that biaxially stretched monolayer silicene exhibits a remarkable increase in thermal conductivity, by as much as 10 times the freestanding value, with increasing applied strain in the range of [0, 0.1], which is attributed to increased contributions from long-wavelength phonons. A further increase in strain in the range of [0.11, 0.18] results in a plateau of the thermal conductivity in an oscillatory manner, governed by a unique dynamic bonding behavior under extreme loading. This anomalous effect reveals new physical insights into the thermal properties of LB-2D materials and may provide some guidelines for designing heat management and energy conversion devices based on such materials.

Keywords: bonding dynamics; low-buckled two-dimensional materials; strain effect; thermal conductivity.