Functional molecular switches of mammalian G protein-coupled bitter-taste receptors

Cell Mol Life Sci. 2021 Dec;78(23):7605-7615. doi: 10.1007/s00018-021-03968-7. Epub 2021 Oct 23.

Abstract

Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.

Keywords: Bitter taste receptor; GPCR; Integrative structural biology; Structure–function relationships.

MeSH terms

  • Amino Acid Sequence
  • Humans
  • Mutagenesis, Site-Directed
  • Mutation*
  • Protein Conformation
  • Receptors, G-Protein-Coupled / chemistry
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*
  • Taste / physiology*

Substances

  • Receptors, G-Protein-Coupled
  • taste receptors, type 2