Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection

Plants (Basel). 2021 Sep 23;10(10):1988. doi: 10.3390/plants10101988.

Abstract

The main problems of crop gene banks comprise heterogeneity of accessions, resulting from mechanical admixtures or out-crossing during their multiplication, and especially the mislabeling of accessions. These discrepancies can adversely affect the results of many expensive research and breeding projects that are based on the use of gene bank resources. To tackle these problems, 860 single-plant progenies (SPPs) of 172 accessions of the Czech winter barley core collection were grown and tested with a set of 53 isolates representing the global virulence/avirulence diversity of powdery mildew. Seventy-one resistance phenotypes encompassed the diversity of known specific resistances and their combinations. Based on testing groups of five SPPs, 94 accessions had one phenotype found in all five SPPs (homogeneous accessions), whereas in 78 accessions (45.3%) more than one phenotype was identified (heterogeneous accessions). In three varieties, specific resistances against the whole set of isolates were detected, but due to high adaptability of the pathogen, they are not recommended for breeding resistant cultivars. Selected SPPs were integrated in the gene bank and are now a reliable source of genotypically pure seed with defined powdery mildew resistance genes that can be used by breeders and researchers. The results obtained can be used to verify authenticity of accession genotype and pedigree, particularly for older varieties for which no other original criteria are available.

Keywords: Blumeria graminis f. sp. hordei; Hordeum vulgare; gene bank; infection response arrays; isolates of the pathogen; resistance gene postulation; winter barley core collection.