Insights into the Resistome and Phylogenomics of a ST195 Multidrug-Resistant Acinetobacter baumannii Clinical Isolate from the Czech Republic

Life (Basel). 2021 Oct 13;11(10):1079. doi: 10.3390/life11101079.

Abstract

Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).

Keywords: Acinetobacter baumannii; PCR; antibiotic resistance; bacteria; β-lactamase.

Publication types

  • Case Reports