Organic Dye-Doped PMMA Lasing

Polymers (Basel). 2021 Oct 15;13(20):3566. doi: 10.3390/polym13203566.

Abstract

Organic thin-film lasers gain interest as potential light sources for application in diverse fields. With the current development, they hold variety of benefits such as: low-cost, high-performance, and color-tunability. Meanwhile, the production is not complicated because both the resonator and the gain medium can be assembled by solution-processable organic materials. To our knowledge, information about using poly(methyl methacrylate) (PMMA) as a matrix for organic dye lasers was insubstantial. Herein, the feasibility of using organic dye-doped PMMA as an organic dye laser was tested. Six different sample designs were introduced to find out the best sample model. The most optimum result was displayed by the sample design, in which the gain medium was sandwiched between the substrate and the photoresist layer with grating structure. The impact of dye concentration and grating period on peak wavelength was also investigated, which resulted in a shift of 6 nm and 25 nm, respectively. Moreover, there were in total six various organic dyes that could function well with PMMA to collectively perform as 'organic dye lasers', and they emitted in the range of 572 nm to 609 nm. Besides, one of the samples was used as a sensor platform. For instance, it was used to detect the concentration of sugar solutions.

Keywords: laser tuning; organic laser; polymer laser.