Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers

Materials (Basel). 2021 Oct 9;14(20):5911. doi: 10.3390/ma14205911.

Abstract

This study evaluated the physicochemical properties and the effect of solubility on the surface morphology and composition of the root canal sealers MTA-Bioseal, MTA-Fillapex, and Adseal. Discs (n = 10) of freshly mixed sealer were prepared and then analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX). The discs were immersed for 1, 7, 14, and 28 days in deionized water. The solubility %; pH change of the solution; and released calcium, phosphate, and silicon were measured for each period. The flowability and film thickness were also evaluated. Changes in the surface morphology and composition after 28 days of immersion were evaluated by SEM/EDX. The data were statistically analyzed by one-way ANOVA at p < 0.05. The FTIR and EDX results revealed similar compositions of MTA-Bioseal and MTA-Fillapex, but with different concentrations. The two MTA-based sealers had higher solution alkalinity (pH > 10) than Adseal (pH ≈ 8.5). MTA-Fillapex exhibited the highest solubility % and the largest calcium and silicon ion release. MTA-Bioseal had the highest phosphate ion release. After 28 days, the sealer surfaces showed large micropores, with larger pores in MTA-Fillapex. Adseal had an intermediate flowability but exhibited the greatest film thickness. Finally, the highest solubility and largest amount of silicon release was exhibited by MTA-Fillapex, which might predispose it to the development of large micropores, compromising the apical seal of obturation.

Keywords: MTA-based root canal sealer; pH; physical and chemical properties; releasing element; solubility.