Identification of Bioactive Phytochemicals from Six Plants: Mechanistic Insights into the Inhibition of Rumen Protozoa, Ammoniagenesis, and α-Glucosidase

Biology (Basel). 2021 Oct 18;10(10):1055. doi: 10.3390/biology10101055.

Abstract

Rumen protozoa prey on feed-degrading bacteria synthesizing microbial protein, lowering nitrogen utilization efficiency in ruminants. In this in vitro study, we evaluated six plants (Adansonia digitata, Flemingia macrophylla, Kalimeris indica,Brassica rapa subsp. chinensis, Portulaca oleracea, and Calotropis gigantea) for their potential to inhibit rumen protozoa and identified the phytochemicals potentially responsible for protozoa inhibition. Rumen protozoa were anaerobically cultured in vitro in the presence of each plant at four doses. All of the tested plants reduced total rumen protozoa (p ≤ 0.05), but C. gigantea and B. rapa were the most inhibitory, inhibiting rumen protozoa by 45.6 and 65.7%, respectively, at the dose of 1.1 mg/mL. Scanning electron microscopy revealed a disruption of the extracellular structure of protozoa cells. Only C. gigantea also decreased the wasteful ammoniagenesis (p ≤ 0.05). Moreover, the A. digitata extract inhibited α-glucosidase activity by about 70% at 100 µg/mL. Reversed-phase high-performance liquid chromatography analysis detected quercetin, anthraquinone, 3-hydroxybenzoic acid, astragaloside, and myricetin in the tested plant leaves. These plants may hold potential as feed additives to reduce rumen protozoa and α- glucosidase activity. Future research is needed to identify the specific anti-protozoal compound(s), the effects on the rumen microbiome, and its fermentation characteristics.

Keywords: bioactive phytochemicals; feed efficiency; microbial α-glucosidase; protozoa inhibition.