Anatomy and Ultrastructure of Galls Induced by Neuroterus quercusbaccarum (Hymenoptera: Cynipidae) on Oak Leaves (Quercus robur)

Insects. 2021 Sep 22;12(10):850. doi: 10.3390/insects12100850.

Abstract

The structure and ultrastructure of two developmental stages of the spangle gall induced by Neuroterus quercusbaccarum (Hymenoptera, Cynipidae) were investigated using light microscopy (LM), fluorescence microscopy (FM), and transmission (TEM) and scanning (SEM) electron microscopy. The general design of the gall structure was typical of Cynipidae, but some structural features distinguished the spangle gall. Previously undescribed, characteristic multicellular epidermal protuberances with large openings were observed in autumn on the surface of galls. These may facilitate the gas exchange between the atmosphere and the inside of the gall, thus assisting larval respiration. The larval chamber is surrounded by both a sclerenchymatous capsule and numerous cells containing calcium oxalate crystals that may both serve as protective barriers. In young galls, the nutritive tissue is a wall-less protoplasmic mass, potentially easily accessible to young larvae with delicate mandibles. Cell walls only develop at a later stage. The nutritive tissue was found to be rich in proteins and lipids, but starch grains were not observed. Cellular topology suggests that spangle galls grow by anticlinal division of marginal epidermal cells and periclinal division of subepidermal cells. Cellular proliferation (hyperplasia) also occurs in the leaf tissue near the connection with the gall peduncle, which eventually lignifies.

Keywords: Cynipidae; Quercus robur; plant–insect interactions; spangle gall.