3-D Culture of Marine Sponge Cells for Production of Bioactive Compounds

Mar Drugs. 2021 Oct 14;19(10):569. doi: 10.3390/md19100569.

Abstract

Production of sponge-derived bioactive compounds in vitro has been proposed as an alternative to wild harvest, aquaculture, and chemical synthesis to meet the demands of clinical drug development and manufacture. Until recently, this was not possible because there were no marine invertebrate cell lines. Recent breakthroughs in the development of sponge cell lines and rapid cell division in improved nutrient media now make this approach a viable option. We hypothesized that three-dimensional (3-D) cell cultures would better represent how sponges function in nature, including the production of bioactive compounds. We successfully cultured sponge cells in 3-D matrices using FibraCel® disks, thin hydrogel layers, and gel microdroplets (GMDs). For in vitro production of bioactive compounds, the use of GMDs is recommended. Nutrients and sponge products rapidly diffuse into and out of the 3-D matrix, the GMDs may be scaled up in spinner flasks, and cells and/or secreted products can be easily recovered. Research on scale-up and production is in progress in our laboratory.

Keywords: 3-D culture; FibraCel® disks; gel microdroplets; hydrogel; marine natural products; marine sponge; ultra low temperature agarose.

MeSH terms

  • Animals
  • Aquaculture*
  • Aquatic Organisms
  • Biological Products / metabolism*
  • Biotechnology
  • Porifera*

Substances

  • Biological Products