Comprehensive mutagenesis to identify amino acid residues contributing to the difference in thermostability between two originally thermostable ancestral proteins

PLoS One. 2021 Oct 21;16(10):e0258821. doi: 10.1371/journal.pone.0258821. eCollection 2021.

Abstract

Further improvement of the thermostability of inherently thermostable proteins is an attractive challenge because more thermostable proteins are industrially more useful and serve as better scaffolds for protein engineering. To establish guidelines that can be applied for the rational design of hyperthermostable proteins, we compared the amino acid sequences of two ancestral nucleoside diphosphate kinases, Arc1 and Bac1, reconstructed in our previous study. Although Bac1 is a thermostable protein whose unfolding temperature is around 100°C, Arc1 is much more thermostable with an unfolding temperature of 114°C. However, only 12 out of 139 amino acids are different between the two sequences. In this study, one or a combination of amino acid(s) in Bac1 was/were substituted by a residue(s) found in Arc1 at the same position(s). The best mutant, which contained three amino acid substitutions (S108D, G116A and L120P substitutions), showed an unfolding temperature more than 10°C higher than that of Bac1. Furthermore, a combination of the other nine amino acid substitutions also led to improved thermostability of Bac1, although the effects of individual substitutions were small. Therefore, not only the sum of the contributions of individual amino acids, but also the synergistic effects of multiple amino acids are deeply involved in the stability of a hyperthermostable protein. Such insights will be helpful for future rational design of hyperthermostable proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / genetics*
  • Dictyostelium / enzymology*
  • Enzyme Stability
  • Mutagenesis, Site-Directed
  • Mutation*
  • Nucleoside-Diphosphate Kinase / chemistry
  • Nucleoside-Diphosphate Kinase / genetics
  • Nucleoside-Diphosphate Kinase / metabolism*
  • Protein Conformation
  • Sequence Homology
  • Temperature*

Substances

  • Amino Acids
  • Nucleoside-Diphosphate Kinase

Grants and funding

This work was supported by JSPS KAKENHI (Grant Number 19K21903) and Individual Research Allowance of Waseda University to SA, and Basic Research Fund of Tokyo University of Pharmacy and Life Sciences to AY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.