Multiple Regulation Effects of Ammonium Acetate on ZnO Growth Process in Chemical Bath Deposition

Chemistry. 2021 Dec 15;27(70):17620-17627. doi: 10.1002/chem.202103064. Epub 2021 Nov 10.

Abstract

Chemical bath deposition method has been used to synthesize a variety of ZnO morphology structures. However, the specificity and interaction of acetate and ammonium ions with ZnO crystal during the growth process remain elusive. This study contributes to understand the roles of ammonium acetate on the growth mechanism of ZnO in Zn(NO3 )2 -HMTA system. The growth process indicates that the nucleation experienced Zn2+ -layered basic zinc salts (LBZs)-ZnO process, while the self-assembled unit changed from urchin-shaped, rod-shaped to a fully coupled twin-shaped structure with increasing ammonium acetate concentration. Ammonium acetate dominates the growth process by combing the ligand-ligand interaction of acetate ions binding to the same Zn-rich (0001) polar surface and ammonium ions regulating hexamethylenetetramine (HMTA) hydrolysis. Relatively regular hexagonal wurtzite structure and a dissolve-renucleation-regrowth process which retains the twin-shaped template and renucleates at the same position are observed at ∼10 mM ammonium acetate. Photoelectrochemistry (PEC) measurements show that the uniform hexagonal ZnO rods (Y-10, the sample named as Y-x (x represents x mM ammonium acetate, herein, x is 10 mM)) have a maximum photocurrent density of 1.54 mA cm-2 at 1.23 V (vs. RHE), much higher than that of the dumbbell-shaped ZnO rods (Y-50, 0.20 mA cm-2 ) at the same voltage. These results provide a further explanation of morphology regulation mechanisms on ZnO synthesis processes and pave the road for more practical applications.

Keywords: PEC catalysis; ZnO; ammonium acetate; crystal growth; morphology regulation.