Respiratory function declines in children with asthma associated with chemical species of fine particulate matter (PM2.5) in Nagasaki, Japan

Environ Health. 2021 Oct 21;20(1):110. doi: 10.1186/s12940-021-00796-x.

Abstract

Background: The differential effects of PM2.5 fractions on children's lung function remain inconclusive. This study aimed to examine whether lung function in asthmatic children was associated with increased PM2.5 fractions in urban areas in Nagasaki prefecture, Japan, where the air pollution level is relatively low but influenced by transboundary air pollution.

Methods: We conducted a multiyear panel study of 73 asthmatic children (boys, 60.3%; mean age, 8.2 years) spanning spring 2014-2016 in two cities. We collected self-measured peak expiratory flow (PEF) twice a day and daily time-series data for PM2.5 total mass and its chemical species. We fitted a linear mixed effects model to examine short-term associations between PEF and PM2.5, adjusting for individual and time-varying confounders. A generalized linear mixed effects model was also used to estimate the association for worsening asthma defined by severe PEF decline. Back-trajectory and cluster analyses were used to investigate the long-range transboundary PM2.5 in the study areas.

Results: We found that morning PEFs were adversely associated with higher levels of sulfate (- 1.61 L/min; 95% CI: - 3.07, - 0.15) in Nagasaki city and organic carbon (OC) (- 1.02 L/min; 95% CI: - 1.94, - 0.09) in Isahaya city, per interquartile range (IQR) increase at lag1. In addition, we observed consistent findings for worsening asthma, with higher odds of severe PEF decline in the morning for sulfate (odds ratio (OR) = 2.31; 95% CI: 1.12, 4.77) and ammonium (OR = 1.73; 95% CI: 1.06, 2.84) in Nagasaki city and OC (OR = 1.51; 95% CI: 1.06, 2.15) in Isahaya city, per IQR increase at lag1. The significant chemical species were higher on days that could be largely attributed to the path of Northeast China origin (for sulfate and ammonium) or both the same path and local sources (for OC) than by other clusters.

Conclusions: This study provides evidence of the differential effects of PM2.5 fractions on lung function among asthmatic children in urban areas, where the Japanese national standards of air quality have been nearly met. Continuous efforts to promote mitigation actions and public awareness of hazardous transboundary air pollution are needed to protect susceptible children with asthma.

Keywords: Asthma; Chemical composition; Children; Lung function; Particulate matter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / adverse effects
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Asthma* / chemically induced
  • Asthma* / epidemiology
  • Child
  • China
  • Environmental Exposure
  • Humans
  • Japan / epidemiology
  • Male
  • Particulate Matter / adverse effects
  • Particulate Matter / analysis

Substances

  • Air Pollutants
  • Particulate Matter