A Molecular Compound for Highly Selective Purification of Ethylene

Angew Chem Int Ed Engl. 2021 Dec 20;60(52):27184-27188. doi: 10.1002/anie.202109338. Epub 2021 Nov 16.

Abstract

Purification of C2 H4 from an C2 H4 /C2 H6 mixture is one of the most challenging separation processes, which is achieved mainly through energy-intensive, cryogenic distillation in industry. Sustainable, non-distillation methods are highly desired as alternatives. We discovered that the fluorinated bis(pyrazolyl)borate ligand supported copper(I) complex {[(CF3 )2 Bp]Cu}3 has features very desirable in an olefin-paraffin separation material. It binds ethylene exclusively over ethane generating [(CF3 )2 Bp]Cu(C2 H4 ). This molecular compound exhibits extremely high and record ideal adsorbed solution theory (IAST) C2 H4 /C2 H6 gas separation selectivity, affording high purity (>99.5 %) ethylene that can be readily desorbed from separation columns. In-situ PXRD provides a "live" picture of the reversible conversion between [(CF3 )2 Bp]Cu(C2 H4 ) and the ethylene-free sorbent in the solid-state, driven by the presence or removal of C2 H4 . Molecular structures of trinuclear {[(CF3 )2 Bp]Cu}3 and mononuclear [(CF3 )2 Bp]Cu(C2 H4 ) are also presented.

Keywords: N Ligands; alkenes; copper; gas separation; pi interactions.