Coprinopsis cinerea Uses Laccase Lcc9 as a Defense Strategy To Eliminate Oxidative Stress during Fungal-Fungal Interactions

Appl Environ Microbiol. 2022 Jan 11;88(1):e0176021. doi: 10.1128/AEM.01760-21. Epub 2021 Oct 20.

Abstract

Frequently, laccases are triggered during fungal cocultivation for overexpression. The function of these activated laccases during coculture has not been clarified. Previously, we reported that Gongronella sp. w5 (w5) (Mucoromycota, Mucoromycetes) specifically triggered the laccase Lcc9 overexpression in Coprinopsis cinerea (Basidiomycota, Agaricomycetes). To systematically analyze the function of the overexpressed laccase during fungal interaction, C. cinerea mycelia before and after the initial Lcc9 overexpression were chosen for transcriptome analysis. Results showed that accompanied by specific utilization of fructose as carbohydrate substrate, oxidative stress derived from antagonistic compounds secreted by w5 appears to be a signal critical for laccase production in C. cinerea. A decrease in reactive oxygen species (ROS) in the C. cinerea wild-type strain followed the increase in laccase production, and then lcc9 transcription and laccase activity stopped. By comparison, increased H2O2 content and mycelial ROS levels were observed during the entire cocultivation in lcc9 silenced C. cinerea strains. Moreover, lcc9 silencing slowed down the C. cinerea mycelial growth, affected hyphal morphology, and decreased the asexual sporulation in coculture. Our results showed that intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Lcc9 takes part in a defense strategy to eliminate oxidative stress during the interspecific interaction with w5. IMPORTANCE The overproduction of laccase during interspecific fungal interactions is well known. However, the exact role of the upregulated laccases remains underexplored. Based on comparative transcriptomic analysis of C. cinerea and gene silencing of laccase Lcc9, here we show that oxidative stress derived from antagonistic compounds secreted by Gongronella sp. w5 was a signal critical for laccase Lcc9 production in Coprinopsis cinerea. Intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Ultimately, Lcc9 takes part in a defense strategy to eliminate oxidative stress and help cell growth and development during the interspecific interaction with Gongronella sp. w5. These findings deepened our understanding of fungal interactions in their natural population and communities.

Keywords: Coprinopsis cinerea; interspecific interaction; laccase; oxidative stress responses; reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agaricales* / metabolism
  • Fungal Proteins / genetics
  • Hydrogen Peroxide
  • Laccase* / genetics
  • Laccase* / metabolism
  • Oxidative Stress

Substances

  • Fungal Proteins
  • Hydrogen Peroxide
  • Laccase

Supplementary concepts

  • Coprinopsis cinerea