Nontraditional Luminescent Molecular Aggregates Encapsulated by Wormlike Silica Nanoparticles for Latent Fingerprint Detection

ACS Appl Mater Interfaces. 2021 Nov 3;13(43):51695-51707. doi: 10.1021/acsami.1c14677. Epub 2021 Oct 20.

Abstract

The phenomenon of nontraditional luminescence has attracted wide attention and curiosity of researchers due to its inexplicable photoluminescence paradigm without aromatic or extended π-systems. The present work puts forward a neotype of a light-emitting nitrogenous small molecule, namely, N-stearoyl-hydroxyproline (L-C16-Hyp), which could emit weak light in aggregation states through the restriction mechanism of intramolecular motion, exhibiting properties comparable to those of AIEgens. Using these molecular aggregates as anionic surfactant micelles to incorporate within the silica matrix, we prepared fluorescent nanoparticles (FL-NPs) by a one-pot method for expedient visualization of latent fingerprints (LFPs). The FL-NPs exhibit an excitation range from 335 to 365 nm, resulting in nontraditional luminescence observed between 410 and 440 nm. The enhanced luminescent FL-NPs may derive from the collective entities or assemblies of restricted L-C16-Hyp, which can be reasonably explicated by an effect termed as cluster-triggered emission (CTE). Theoretical calculations demonstrated that this luminescence pattern belongs to partial charge transfer, which is mainly attributed to the close interaction between the tertiary amino and adjacent carboxyl in the L-C16-Hyp structure. Moreover, some merits of FL-NPs, such as wormlike nanomorphology, stable photophysical properties, low toxicity, great adhesion to multiple substrates, easy to get raw material, an inexpensive, simple process, and rapid detection without any further modification or assistance, provide the feasibility of efficacious LFP detection. Overall, this study will provide insights into the design and application of luminescent materials with unconventional groups.

Keywords: aggregation; cluster-triggered emissions; l-hydroxyproline; latent fingerprint; nontraditional luminescence; silica nanoparticles.