Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night

PLoS Biol. 2021 Oct 19;19(10):e3001413. doi: 10.1371/journal.pbio.3001413. eCollection 2021 Oct.

Abstract

Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustics
  • Animals
  • Aquatic Organisms / physiology
  • Atmosphere
  • Circadian Rhythm / radiation effects*
  • Euphausiacea / physiology*
  • Euphausiacea / radiation effects*
  • Light*
  • Models, Biological
  • Vision, Ocular / physiology
  • Zooplankton / physiology

Grants and funding

Support for this work came from the Norwegian Research Council (NFR) projects ArcticABC and DeepImpact (NFR grants 244319 and 300333, JB) and the Centre for Autonomous Marine Operations and Systems (NTNU AMOS, NFR 223254, GJ). Additional support came from the CHASE project, part of the Changing Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council (NERC, project number: NE/R012733/1, KSL) and the German Federal Ministry of Education and Research (BMBF, project number: 03F0803A, KSL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.