MnCo2 S4 -CoS1.097 Heterostructure Nanotubes as High Efficiency Cathode Catalysts for Stable and Long-Life Lithium-Oxygen Batteries Under High Current Conditions

Adv Sci (Weinh). 2021 Nov;8(22):e2103302. doi: 10.1002/advs.202103302. Epub 2021 Oct 18.

Abstract

Constructing the heterostructures is considered to be one of the most effective methods to improve the poor electrical conductivity and insufficient electrocatalytic properties of metal sulfide catalysts. In this work, MnCo2 S4 -CoS1.097 nanotubes are successfully prepared via a reflux- hydrothermal process. This novel cathode catalyst delivers high discharge/charge specific capacities of 21 765/21 746 mAh g-1 at 200 mA g-1 and good rate capability. In addition, a favorable cycling stability with a fixed specific capacity of 1000 mAh g-1 at high current density of 1000 mA g-1 (167 cycles) and 2000 mA g-1 (57 cycles) are delivered. It is proposed that fast transmission of ions and electrons accelerated by the built-in electric field, multiple active sites from the heterostructure, and nanotube architecture with large specific surface area are responsible for the superior electrochemical performance. To some extent, the rational design of this heterostructured metal sulfide catalyst provides guidance for the development of the stable and efficient cathode catalysts for Li-O2 batteries that can be employed under high current conditions.

Keywords: Li-O2 batteries; MnCo2S4-CoS1.097; cathode catalysts; electrocatalysis; heterostructure.