Potency of Omadacycline against Mycobacteroides abscessus Clinical Isolates In Vitro and in a Mouse Model of Pulmonary Infection

Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0170421. doi: 10.1128/AAC.01704-21. Epub 2021 Oct 18.

Abstract

The incidence of nontuberculous mycobacterial diseases in the United States is rising and has surpassed that of tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus, an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat, and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC90 of 0.5 µg/mL against a panel of 32 contemporary M. abscessus clinical isolates, several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline combined with clarithromycin, azithromycin, cefdinir, rifabutin, or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300-mg standard oral human dose was used. Compared to the untreated control group, within 4 weeks of treatment, 1 to 3 log10 fewer M. abscessus CFU were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first 2 weeks of treatment against all four M. abscessus strains.

Keywords: Mycobacterium abscessus; omadacycline; pulmonary infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Clarithromycin / pharmacology
  • Mice
  • Microbial Sensitivity Tests
  • Mycobacterium Infections, Nontuberculous* / drug therapy
  • Mycobacterium Infections, Nontuberculous* / microbiology
  • Mycobacterium abscessus*
  • Tetracyclines / pharmacology
  • Tetracyclines / therapeutic use

Substances

  • Anti-Bacterial Agents
  • Tetracyclines
  • omadacycline
  • Clarithromycin