Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes

ACS Omega. 2021 Sep 29;6(40):26391-26403. doi: 10.1021/acsomega.1c03666. eCollection 2021 Oct 12.

Abstract

Electrode fouling is a major factor that compromises the performance of biosensors in in vivo usage. It can be roughly classified into (i) electrochemical fouling, caused by the analyte and its reaction products, and (ii) biofouling, caused by proteins and other species in the measurement environment. Here, we examined the effect of electrochemical fouling [in phosphate buffer saline (PBS)], biofouling [in cell-culture media (F12-K) with and without proteins], and their combination on the redox reactions occurring on carbon-based electrodes possessing distinct morphologies and surface chemistry. The effect of biofouling on the electrochemistry of an outer sphere redox probe, [Ru(NH3)6]3+, was negligible. On the other hand, fouling had a marked effect on the electrochemistry of an inner sphere redox probe, dopamine (DA). We observed that the surface geometry played a major role in the extent of fouling. The effect of biofouling on DA electrochemistry was the worst on planar pyrolytic carbon, whereas the multiwalled carbon nanotube/tetrahedral amorphous carbon (MWCNT/ta-C), possessing spaghetti-like morphology, and carbon nanofiber (CNF/ta-C) electrodes were much less seriously affected. The blockage of the adsorption sites for DA by proteins and other components of biological media and electrochemical fouling components (byproducts of DA oxidation) caused rapid surface poisoning. PBS washing for 10 consecutive cycles at 50 mV/s did not improve the electrode performance, except for CNF/ta-C, which performed better after PBS washing. Overall, this study emphasizes the combined effect of biological and electrochemical fouling to be critical for the evaluation of the functionality of a sensor. Thus, electrodes possessing composite nanostructures showed less surface fouling in comparison to those possessing planar geometry.