Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition

Sci Adv. 2021 Oct 15;7(42):eabj8958. doi: 10.1126/sciadv.abj8958. Epub 2021 Oct 15.

Abstract

Polymeric sensors on fabrics have vast potential toward the development of versatile applications, particularly when the ready-made wearable or fabric can be directly coated. However, traditional coating approaches, such as solution-based methods, have limitations in achieving uniform and thin films because of the poor surface wettability of fabrics. Herein, to realize a uniform poly(3,4-ethylenedioxythiophene) (PEDOT) layer on various everyday fabrics, we use oxidative chemical vapor deposition (oCVD). The oCVD technique is a unique method capable of forming patterned polymer films with controllable thicknesses while maintaining the inherent advantages of fabrics, such as exceptional mechanical stability and breathability. Utilizing the superior characteristics of oCVD PEDOT, we succeed in fabricating blood pressure– and respiratory rate–monitoring sensors by directly depositing and patterning PEDOT on commercially available disposable gloves and masks, respectively. Those results are expected to pave efficient and facile ways for skin-compatible and affordable sensors for personal health care monitoring.