Surface-Defect States in Photovoltaic Absorber GeSe

J Phys Chem Lett. 2021 Oct 28;12(42):10249-10254. doi: 10.1021/acs.jpclett.1c02813. Epub 2021 Oct 14.

Abstract

GeSe is an emerging promising light-harvesting material for photovoltaics due to its excellent optoelectronic properties, nontoxic and earth-abundant constituents, and high stability. In particular, perovskite-like antibonding states at the valence band maximum arising from Ge-4s and Se-4p coupling enable the bulk-defect-tolerant properties in GeSe. However, a fundamental understanding of surface-defect states in GeSe, another important factor for high-performance photovoltaics, is still lacking. Here, we investigate the surface-defect properties of GeSe through first-principle calculations. We find that different from common semiconductors possessing numerous surface dangling bonds, some GeSe surfaces are prone to reconstruction, thus eliminating the dangling bonds. The rearranged armchair edges exhibit unexpected benign defect properties, similar to those of bulk GeSe, arising from the formation of bulk-like [GeSe3] tetrahedrons. We further show that the stable exposed (111) surfaces are hard to reconstruct due to the stiff structure but are effectively passivated by the addition of H.