Degradable Polymer Films Made from Poly(salicylic-acid- co-sebacic acid) and Poly(sebacic anhydride)/Poly(adipic anhydride) Blends: Degradation Kinetics and Use as Sacrificial Layers for Polymer Multilayer Systems

Macromol Chem Phys. 2020 May 19;221(12):2000106. doi: 10.1002/macp.202000106. eCollection 2020 Jun.

Abstract

Two approaches to obtain fast-degrading polymer films based on poly(sebacic anhydride) (PSA) are presented, both of which target polymer films with a lower degree of crystallinity than pure PSA homopolymer: first, thin films were prepared from poly(adipic anhydride)/poly(sebacic anhydride) blends at different ratios, and second, films were made from the copolymer poly(salicylic acid-co-sebacic acid). These films are intended as sacrificial layers for self-regenerating functional coatings, for example to regenerate antimicrobial surface activity. The degradation kinetics of these films were analyzed by surface plasmon resonance spectroscopy (SPR). The results of the blends approach indicate that the blend degradation rate was accelerated only in the initial degradation phase (compared to PSA). The degradation kinetics study of the poly(salicylic-acid-co-sebacic acid) film shows that this copolymer degraded faster than poly(sebacic anhydride) initially, releasing antimicrobial salicylic acid in the process. However, its degradation rate slowed down at a mass loss > 60% and approached the PSA degradation curve at longer degradation times. When tested as sacrificial layer in self-regenerating antimicrobial polymer stacks, it was found that the degradation rate was too low for successful layer shedding.

Keywords: blends; degradable polymers; degradation; polymer coatings; thin films.