Mechanical Properties of Hybrid Carbonized Plant Fibers Reinforced Bio-Based Epoxy Laminates

Polymers (Basel). 2021 Oct 7;13(19):3435. doi: 10.3390/polym13193435.

Abstract

In this work, henequen and ixlte plant fibers were carbonized in a horizontal quartz tube furnace. Several carbonized and non-carbonized fiber fabric configurations were impregnated with a bio-based epoxy resin through the infuseon process. The infrared spectra revealed characteristic bands of styrene instead of organic compounds, representing that the carbonization procedure was adequate to carbonize the plant fibers. The porosity volume ratio for the non-carbonized henequen laminates showed the highest number of voids >1.9%, and the rest of the composites had a similar void density between 1.2-1.7%. The storage modulus of the non-carbonized and carbonized henequen laminates resulted in 2268.5 MPa and 2092.1 MPa, respectively. The storage modulus of the carbonized ixtle laminates was 1541.4 MPa, which is 37.8% higher than the non-carbonized ixtle laminates and 12% higher than henequen composites. The laminates were subject to thermal shock cycling, and tomography scans revealed no alterations on the porosity level or in the cracks after the cycling procedure. Thermal shock cycling promoted the post-curing effect by increasing the glass transition temperature. The viscoelastic results showed a variation in the storage modulus when the carbonized fiber fabrics were located between natural fiber fabrics, which was attributed to more excellent compaction during the infusion process. Variations in the viscoelastic behavior were observed between the different types of natural fibers, which influenced the mechanical properties.

Keywords: bio-epoxy composites; henequen fiber; ixtle fiber; natural fiber; thermal shock; viscoelastic properties.