The Application of Hollow Carbon Nanofibers Prepared by Electrospinning to Carbon Dioxide Capture

Polymers (Basel). 2021 Sep 25;13(19):3275. doi: 10.3390/polym13193275.

Abstract

Coaxial electrospinning has been considered a straightforward and convenient method for producing hollow nanofibers. Therefore, the objective of this study was to develop hollow activated carbon nanofibers (HACNFs) for CO2 capture in order to reduce emissions of CO2 to the atmosphere and mitigate global warming. Results showed that the sacrificing core could be decomposed at carbonization temperatures above 900 °C, allowing the formation of hollow nanofibers. The average outer diameters of HACNFs ranged from 550 to 750 nm, with a shell thickness of 75 nm. During the carbonization stage, the denitrogenation reactions were significant, while in the CO2 activation process, the release of carbon oxides became prominent. Therefore, the CO2 activation could increase the percentages of N=C and quaternary N groups. The major nitrogen functionalities on most samples were O=C-NH and quaternary N. However, =C and quaternary N groups were found to be crucial in determining the CO2 adsorption performance. CO2 adsorption on HACNFs occurred due to physical adsorption and was an exothermic reaction. The optimal CO2 adsorption performance was observed for HACNFs carbonized at 900 °C, where 3.03 mmol/g (1 atm) and 0.99 mmol/g (0.15 atm) were measured at 25 °C. The degradation of CO2 uptakes after 10 adsorption-desorption cyclic runs could be maintained within 8.9%.

Keywords: adsorption; carbon dioxide; electrospinning; hollow carbon nanofibers.