The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process

Sensors (Basel). 2021 Sep 28;21(19):6468. doi: 10.3390/s21196468.

Abstract

The presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory conditions the process of demineralization and gradual removal of the hydroxyapatite, the test samples of bones were placed into 10% acetic acid. Measurements were carried out in two series. The first one took two weeks with data acquired every day. In the second series, the measurements were made during one day at an hourly interval (after 1, 2, 3, 5, 7, 10, and 24 h). The relation between the content of hydroxyapatite and images recorded using OCT was analyzed and discussed. Moreover, the polarization properties of the bones, including retardation angles of the bones, were evaluated. Raman measurement confirmed the disappearance of the hydroxyapatite and the speed of this process. This work presents the results of the preliminary study on the possibility of measuring changes in bone mineralization by means of the proposed methods and confirms their potential for practical use in the future.

Keywords: Raman spectroscopy; bones; polarization-sensitive optical coherence tomography.

MeSH terms

  • Humans
  • Spectrum Analysis, Raman*
  • Tomography, Optical Coherence*