A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold

Sensors (Basel). 2021 Sep 24;21(19):6369. doi: 10.3390/s21196369.

Abstract

Previous studies have used the anaerobic threshold (AT) to non-invasively predict muscle fatigue. This study proposes a novel method for the automatic classification of muscle fatigue based on surface electromyography (sEMG). The sEMG data were acquired from 20 participants during an incremental test on a cycle ergometer using sEMG sensors placed on the vastus rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), and gastrocnemius (GA) muscles of the left leg. The ventilation volume (VE), oxygen uptake (VO2), and carbon dioxide production (VCO2) data of each participant were collected during the test. Then, we extracted the time-domain and frequency-domain features of the sEMG signal denoised by the improved wavelet packet threshold denoising algorithm. In this study, we propose a new muscle fatigue recognition model based on the long short-term memory (LSTM) network. The LSTM network was trained to classify muscle fatigue using sEMG signal features. The results showed that the improved wavelet packet threshold function has better performance in denoising sEMG signals than hard threshold and soft threshold functions. The classification performance of the muscle fatigue recognition model proposed in this paper is better than that of CNN (convolutional neural network), SVM (support vector machine), and the classification models proposed by other scholars. The best performance of the LSTM network was achieved with 70% training, 10% validation, and 20% testing rates. Generally, the proposed model can be used to monitor muscle fatigue.

Keywords: long short-term memory; muscle fatigue; surface electromyography; wavelet packet.

MeSH terms

  • Algorithms
  • Electromyography
  • Humans
  • Muscle Fatigue*
  • Muscle, Skeletal*
  • Support Vector Machine