Multilayer Casting of Eco-Efficient Self-Compacting Concrete with Reduced Binder Content

Materials (Basel). 2021 Sep 29;14(19):5685. doi: 10.3390/ma14195685.

Abstract

In the study, experiments were performed on two eco-efficient self-compacting concrete mixes of reduced binder content containing supplementary cementitious materials. The behaviour of the eco-efficient self-compacting concrete (SCC) mixture was examined to determine whether it is suitable for multilayer casting. It is recommended that the SCC should be poured in an uninterrupted manner. However, it is not uncommon that contractors are forced to take breaks as a result of delivery delays. Casting the elements in multiple poorly prepared layers may cause the creation of cold joints between them. Two technological variants of the multilayer casting of eco-efficient SCC on beam elements were analysed: pouring the mixture from a minor height on the previously placed layer and placing the subsequent layer on the mechanically disturbed surface of the underlying material. Different delay times were used: 15, 30, 45 and 60 min between the execution of two layers of eco-efficient SCC. The load-bearing capacity of the joint was determined using a splitting tensile strength test on cubic elements. It was observed that, regardless of the mixture and casting variant, the interlayer bond strength decreased as the delay time increased. This effect was less pronounced when the first layer was mechanically disturbed. It was also demonstrated that concrete with reduced binder content is characterized by a lower drop in bond strength between successive layers. Finally, it is noted that the current recommendations and normative guidelines for the multilayer casting of self-compacting concrete should be specified with regard to the time delay allowed for the execution of the next layer in the absence of interference with the previously placed layer. Lack of clarity in this respect may result in the creation of a cold joint and hence a reduction in the load-bearing capacity between layers.

Keywords: bond strength; eco-efficient self-compacting concrete; multilayer casting; placement technology.