Electrical Resistivity of Cu and Au at High Pressure above 5 GPa: Implications for the Constant Electrical Resistivity Theory along the Melting Curve of the Simple Metals

Materials (Basel). 2021 Sep 22;14(19):5476. doi: 10.3390/ma14195476.

Abstract

The electrical resistivity of solid and liquid Cu and Au were measured at high pressures from 6 up to 12 GPa and temperatures ∼150 K above melting. The resistivity of the metals was also measured as a function of pressure at room temperature. Their resistivity decreased and increased with increasing pressure and temperature, respectively. With increasing pressure at room temperature, we observed a sharp reduction in the magnitude of resistivity at ∼4 GPa in both metals. In comparison with 1 atm data and relatively lower pressure data from previous studies, our measured temperature-dependent resistivity in the solid and liquid states show a similar trend. The observed melting temperatures at various fixed pressure are in reasonable agreement with previous experimental and theoretical studies. Along the melting curve, the present study found the resistivity to be constant within the range of our investigated pressure (6-12 GPa) in agreement with the theoretical prediction. Our results indicate that the invariant resistivity theory could apply to the simple metals but at higher pressure above 5 GPa. These results were discussed in terms of the saturation of the dominant nuclear screening effect caused by the increasing difference in energy level between the Fermi level and the d-band with increasing pressure.

Keywords: constant resistivity; electrical resistivity; electrons and phonons interactions; high pressure and temperature; melting curve; thermal conductivity.