Reactivity of the Bicyclic Amido-Substituted Silicon(I) Ring Compound Si4 {N(SiMe3 )Mes}4 with FLP-Type Character

Chemistry. 2021 Dec 9;27(69):17361-17368. doi: 10.1002/chem.202103101. Epub 2021 Nov 5.

Abstract

The bicyclic amido-substituted silicon(I) ring compound Si4 {N(SiMe3 )Mes}4 2 (Mes=Mesityl=2,4,6-Me3 C6 H2 ) features enhanced zwitterionic character and different reactivity from the analogous compound Si4 {N(SiMe3 )Dipp}4 1 (Dipp=2,6-i Pr2 C6 H3 ) due to the smaller mesityl substituents. In a reaction with the N-heterocyclic carbene NHC Me 4 (1,3,4,5-tetramethyl-imidazol-2-ylidene), we observe adduct formation to give Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 (3). This adduct reacts further with the Lewis acid BH3 to yield the Lewis acid-base complex Si4 {N(SiMe3 )Mes}4 ⋅ NHC Me 4 ⋅ BH3 (4). Coordination of AlBr3 to 2 leads to the adduct 5. Calculated proton affinities and fluoride ion affinities reveal highly Lewis basic and very weak Lewis acidic character of the low-valent silicon atoms in 1 and 2. This is confirmed by protonation of 1 and 2 with Brookharts acid yielding 6 and 7. Reaction with diphenylacetylene only occurs at 111 °C with 2 in toluene and is accompanied by fragmentation of 2 to afford the silacyclopropene 8 and the trisilanorbornadiene species 9.

Keywords: N-heterocyclic carbenes; amines; frustrated Lewis pairs; inorganic ring systems; silicon.