Nanoparticle Superlattices through Template-Encoded DNA Dendrimers

J Am Chem Soc. 2021 Oct 20;143(41):17170-17179. doi: 10.1021/jacs.1c07858. Epub 2021 Oct 11.

Abstract

The chemical interactions that lead to the emergence of hierarchical structures are often highly complex and difficult to program. Herein, the synthesis of a series of superlattices based upon 30 different structurally reconfigurable DNA dendrimers is reported, each of which presents a well-defined number of single-stranded oligonucleotides (i.e., sticky ends) on its surface. Such building blocks assemble with complementary DNA-functionalized gold nanoparticles (AuNPs) to yield five distinct crystal structures, depending upon choice of dendrimer and defined by phase symmetry. These DNA dendrimers can associate to form micelle-dendrimers, whereby the extent of association can be modulated based upon surfactant concentration and dendrimer length to produce a low-symmetry Ti5Ga4-type phase that has yet to be reported in the field of colloidal crystal engineering. Taken together, colloidal crystals that feature three different types of particle bonding interactions-template-dendron, dendrimer-dendrimer, and DNA-modified AuNP-dendrimer-are reported, illustrating how sequence-defined recognition and dynamic association can be combined to yield complex hierarchical materials.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Dendrimers*

Substances

  • Dendrimers