Remote liver injury following acute renal ischaemia-reperfusion: involvement of circulating exosomal miR-687 and regulation by thymoquinone

Exp Physiol. 2021 Nov;106(11):2262-2275. doi: 10.1113/EP089765. Epub 2021 Oct 25.

Abstract

New findings: What is the central question of this study? What is the role of circulating exosomal miR-687 in remote hepatic injury following renal ischaemia-reperfusion injury (IRI) and does thymoquinone have a modulatory impact? What is the main finding and its importance? Exosomal miR-687 was expressed in renal IRI, entered the circulation and was deposited in the liver. Liver exosomal miR-687 was correlated with liver inflammation and apoptosis. Thymoquinone aborted the renal production of exosomal miR-687 and its further circulation to the liver.

Abstract: The pathophysiology of remote hepatic injury following acute renal ischaemia-reperfusion injury (IRI) is of particular clinical interest. Secreted small non-coding microRNA (miRs) are thought to exist in exosome-encapsulated form. Thymoquinone (TQ) is the main bioactive ingredient of Nigella sativa and has several renoprotective actions. We expected exosomal miR-687 to be relevant as it could act as a humoral mediator, with possible modulation by TQ. Thirty adult male Wister albino rats were assigned to three groups (n = 10); (1) sham-operated, (2) renal ischaemia-reperfusion injury (IRI), and (3) renal IRI pre-treated with TQ 10 mg/kg/day i.v. (TQ-IRI) for 10 days in addition to a dose administered at reperfusion onset. Following 24 h of reperfusion, the IRI group showed renal tissue hypoxia-inducible factor upregulation (P < 0.001). Electron microscopy images of exosomes and analysis of miR-687 revealed elevated levels, which appeared in the circulation. Large amounts of exosomal miR-687 were transmitted to the liver tissue. In the IRI group, liver transaminases (alanine aminotransferase, aspartate aminotransferase) were markedly (P < 0.001) elevated. The hepatic tissue inflammatory markers (vascular cell adhesion molecule-1, myeloperoxidase, monocyte chemotactic protein-1 and nuclear factor-κB) were upregulated (P < 0.001) accompanied with elevated caspase-3. TQ suppressed (P < 0.001) the renal expression and release of exosomal miR-687 into the circulation and its further deposition in the liver tissue; consequently, TQ diminished (P < 0.001) liver tissue inflammation and cellular apoptosis. The results were confirmed by histological tissue assessment. In conclusion, exosomal miR-687 liberated from injured renal tissues into the circulation may be an important factor in inducing remote hepatic injury. Exosomal miR-687 inhibition by TQ protected both renal and hepatic tissues from injury.

Keywords: exosomal miR-687; liver; remote organ injury; renal ischaemia-reperfusion injury; thymoquinone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury* / drug therapy
  • Acute Kidney Injury* / metabolism
  • Animals
  • Benzoquinones
  • Ischemia / metabolism
  • Liver / metabolism
  • Male
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Rats
  • Reperfusion
  • Reperfusion Injury* / metabolism

Substances

  • Benzoquinones
  • MicroRNAs
  • thymoquinone