Subregional radiomics analysis for the detection of the EGFR mutation on thoracic spinal metastases from lung cancer

Phys Med Biol. 2021 Oct 26;66(21). doi: 10.1088/1361-6560/ac2ea7.

Abstract

The present study intended to use radiomic analysis of spinal metastasis subregions to detect epidermal growth factor receptor (EGFR) mutation. In total, 94 patients with thoracic spinal metastasis originated from primary lung adenocarcinoma (2017-2020) were studied. All patients underwent T1-weighted (T1W) and T2 fat-suppressed (T2FS) MRI scans. The spinal metastases (tumor region) were subdivided into phenotypically consistent subregions based on patient- and population-level clustering: Three subregions, S1, S2 and S3, and the total tumor region. Radiomics features were extracted from each subregion and from the whole tumor region as well. Least shrinkage and selection operator (LASSO) regression were used for feature selection and radiomics signature definition. Detection performance of S3 was better than all other regions using T1W (AUCs, S1 versus S2 versus S3 versus whole tumor, 0.720 versus 0.764 versus 0.786 versus 0.758) and T2FS (AUCs, S1 versus S2 versus S3 versus whole tumor, 0.791 versus 0.708 versus 0.838 versus 0.797) MRI. The multi-regional radiomics signature derived from the joint of inner subregion S3 from T1W and T2FS MRI achieved the best detection capabilities with AUCs of 0.879 (ACC = 0.774, SEN = 0.838, SPE = 0.840) and 0.777 (ACC = 0.688, SEN = 0.947, SPE = 0.615) in the training and test sets, respectively. Our study revealed that MRI-based radiomic analysis of spinal metastasis subregions has the potential to detect the EGFR mutation in patients with primary lung adenocarcinoma.

Keywords: EGFR; MRI; lung adenocarcinoma; radiomics; thoracic spinal metastases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • ErbB Receptors / genetics
  • Humans
  • Lung Neoplasms* / diagnostic imaging
  • Lung Neoplasms* / genetics
  • Magnetic Resonance Imaging
  • Mutation
  • Retrospective Studies
  • Spinal Neoplasms* / diagnostic imaging
  • Spinal Neoplasms* / genetics

Substances

  • EGFR protein, human
  • ErbB Receptors