Vaspin Mediates the Intraorgan Crosstalk Between Heart and Adipose Tissue in Lipoatrophic Mice

Front Cell Dev Biol. 2021 Sep 24:9:647131. doi: 10.3389/fcell.2021.647131. eCollection 2021.

Abstract

Lipoatrophy is characterized as selective loss of adipose tissues, leading to the severity of cardiovascular disorders. Therefore, there was close intraorgan crosstalk between adipose tissue and cardiovascular in lipoatrophy. A-ZIP/F-1 mouse, a well-established lipoatrophic model, and primary cardiomyocytes were used for investigating the pathophysiological changes and molecular mechanisms. A-ZIP/F-1 mice had severe fat loss and impaired ventricular function during growth, but closely associated with the reduction of circulating vaspin levels. Administration of recombinant vaspin protein improved cardiac structural disorders, left ventricular dysfunction, and inflammatory response in lipoatrophic mice. In detail, vaspin decreased cardiac lipid deposits, but enhanced mitochondrial biogenesis and activities. Interestingly, A-ZIP/F-1 mice transplanted with normal visceral adipose tissues exhibited improvement in cardiac structural remodeling and mitochondrial function. Mechanistically, vaspin increased cardiac AKT activity, which guaranteed the mitochondrial benefits of vaspin in lipoatrophic mice and primary mouse cardiomyocytes. The present study suggested that vaspin possessed biological benefits in attenuating lipoatrophy-induced cardiomyopathy onset, and targeting vaspin/AKT signaling was a potential strategy to maintain heart metabolism.

Keywords: AKT; adipose tissue; cardiomyopathy; lipoatrophy; mitochondria; vaspin.