Obtaining Cellulose-Available Raw Materials by Pretreatment of Common Agro-Forestry Residues With Pleurotus spp

Front Bioeng Biotechnol. 2021 Sep 22:9:720473. doi: 10.3389/fbioe.2021.720473. eCollection 2021.

Abstract

The goals of the present study were to characterize the profile of ligninolytic enzymes in five Pleurotus species and determine their ability to delignify eight common agro-forestry residues. Generally, corn stalks were the optimal inducer of Mn-dependent peroxidase activity, but the activity peak was noted after wheat straw fermentation by P. eryngii (3066.92 U/L). P. florida was the best producer of versatile peroxidase, especially on wheat straw (3028.41 U/L), while apple sawdust induced the highest level of laccase activity in P. ostreatus (49601.82 U/L). Efficiency of the studied enzymes was expressed in terms of substrate dry matter loss, which was more substrate-than species-dependent. Reduction of substrate dry mass ranged between 24.83% in wheat straw and 8.83% in plum sawdust as a result of fermentation with P. florida and P. pulmonarius, respectively. The extent of delignification of the studied substrates was different, ranging from 51.97% after wheat straw fermentation by P. pulmonarius to 4.18% in grapevine sawdust fermented by P. ostreatus. P. pulmonarius was also characterized by the highest cellulose enrichment (6.54) and P. ostreatus by very low one (1.55). The tested biomass is a highly abundant but underutilized source of numerous value-added products, and a cocktail of ligninolytic enzymes of Pleurotus spp. could be useful for its environmentally and economically friendly transformation.

Keywords: Mn-oxidizing peroxidases; delignification; laccase; lignocellulose; white-rot fungi.