Prescription of Sageretia hamosa Brongn Relieved Goiter through Promoted Apoptosis of Thyroid Cells via miR-511-3p and PTEN/PI3K/Akt Pathway

J Healthc Eng. 2021 Sep 29:2021:3506559. doi: 10.1155/2021/3506559. eCollection 2021.

Abstract

Goiter is thyroid enlargement, in China, Sageretia hamosa Brongn (SHB) can be used to treat goiter, but it has not been reported. Therefore, data analytics of SHB prescription on thyroid were explored in this study to provide a theoretical support for SHB in the treatment of goiter. In this study, rat in goiter model was constructed by using propylthiouracil (PTU) and treated with SHB prescription. Thyroid function about the triiodothyronine (T3), free thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) were measured by ELISA; thyroid coefficient was calculated after weighed thyroid; and HE staining was applied to assess the morphology of thyroid tissue. miRNA microarrays were employed to detect miRNA expression in thyroid tissue of rats. Expression of miR-511-3p was measured by RT-qPCR; expression of proteins (PTEN and apoptosis-related proteins) was tested by western blotting; relationship between miR-511-3p and PTEN was investigated by dual luciferase reporter gene assay; cell viability rate was determined by CCK-8; and cell cycle distribution and apoptosis rate were detected by flow cytometry. The results showed that SHB prescription ameliorated goiter and downregulated miR-511-3p. miR-511-3p targeted PTEN in thyroid cells and PTEN negatively regulated the activation of PI3K/Akt pathway. Furthermore, the inhibition of apoptosis in thyroid cells caused by the overexpression of miR-511-3p or the activation of PI3K/Akt pathway was reversed by treatment of SHB prescription, inhibition of miR-511-3p, or overexpression of PTEN. In conclusion, SHB prescription promoted apoptosis of thyroid through decreased miR-511-3p and regulated PTEN/PI3K/Akt pathway, it might suggest possible medical applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Retracted Publication

MeSH terms

  • Animals
  • Apoptosis
  • Goiter* / drug therapy
  • MicroRNAs* / genetics
  • PTEN Phosphohydrolase / genetics
  • Phosphatidylinositol 3-Kinases
  • Prescriptions
  • Proto-Oncogene Proteins c-akt
  • Rats

Substances

  • MicroRNAs
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • Pten protein, rat