Monitor unit prediction model for wobbling proton therapy with ridge filters

Med Phys. 2021 Dec;48(12):8107-8116. doi: 10.1002/mp.15277. Epub 2021 Oct 26.

Abstract

Purpose: We introduced an output factor (cGy/MU) prediction model for wobbling proton beams over the full range of proton energy, scatterer thickness, and the width of spread-out Bragg peak (SOBP).

Materials and methods: From December 2015 to August 2020, 1990 wobbling proton fields were used to treat patients, where 1714 fields had a diameter smaller than 11 cm and 276 had a diameter between 11 and 16 cm, which were designated as small and middle wobbling radius cases, respectively. The output factor is defined as the ratio of proton absorbed dose at mid-depth of SOBP to monitor unit (MU). It depends dominantly on proton energy, scatterer thickness, and the width of SOBP. We established the prediction model using the polynomial fitting function and determined its coefficients for the small and middle wobbling radius cases. We evaluated the accuracy of our prediction model by calculating the difference between predicted and measured output factors.

Results: For the small wobbling radius cases, the mean value of the output factor difference was 0.22% with a standard deviation of 1.3%. For the middle wobbling radius cases, the mean value was 0.20% and with a standard deviation of 0.79%. The large deviation was especially observed for wobbling proton beams having small field size and small width of SOBP.

Conclusions: We made a prediction model of output factor for wobbling proton beams, thereby determining MU of each beam. This included the dependency of the output factor on the proton energy between 70 and 230 MeV, scatterer thickness, and the width of SOBP. For 93.6% of the small and 95.5% of the middle wobbling radius cases, the deviation between predicted and measured output factor was below 3%. The cases with deviations of predicted and measured output factor above 3% had small field size and small width of SOBP. The accuracy of our prediction model would be improved by adopting the field size effect and measuring more cases of small field size and small SOBP width in the future.

Keywords: prediction model; proton output factor; proton therapy; wobbling beam technique.

MeSH terms

  • Algorithms
  • Humans
  • Proton Therapy*
  • Protons
  • Radiotherapy Dosage

Substances

  • Protons