Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation

Int J Food Microbiol. 2021 Dec 2:359:109426. doi: 10.1016/j.ijfoodmicro.2021.109426. Epub 2021 Sep 30.

Abstract

Cereals are widely used as raw material for food fermentation, and they can provide a variety of sugars in the fermentation via saccharification. However, the effect of sugar profile on microbial metabolism in spontaneous food fermentation is still unclear. Here, this work studied the regulation of sugar profile on the diversity of microbiota and their metabolism in Chinese Baijiu fermentation using sorghum as raw material. Six sugars were detected during Baijiu fermentation with 6 different cultivars of sorghum. The diversity of microbiota (ANOSIM: bacteria: P = 0.001, R = 0.77; fungi: P = 0.009, R = 0.33) and metabolites (ANOSIM: P = 0.001, R = 0.50) had different profiles during Baijiu fermentation. Among these sugars, glucose, fructose, and arabinose were identified as key sugars driving both the microbial and the metabolic diversity during Chinese Baijiu fermentation, and the metabolic diversity was positively correlated with the microbial diversity (P < 0.05). Hence, response surface methodology was used to establish a predictive model for regulating the metabolic diversity with the combination of three key sugars. The metabolic diversity significantly increased to 0.42 with the optimized levels of glucose (31.82 g/L), fructose (4.81 g/L), and arabinose (0.20 g/L), compared with unoptimized low-level average metabolic diversity (0.29). This work would provide a strategy to control microbial metabolism in spontaneous food fermentation, hence to improve the quality of fermented foods.

Keywords: Food fermentation; Microbial diversity; Regulation; Sorghum.

MeSH terms

  • Bacteria / genetics
  • China
  • Fermentation
  • Microbiota*
  • Sugars*

Substances

  • Sugars