Structure and conformational properties of ideal nanogel particles in athermal solutions

J Chem Phys. 2021 Oct 7;155(13):134905. doi: 10.1063/5.0064835.

Abstract

We investigate the conformational properties of "ideal" nanogel particles having a lattice network topology by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties of this type of branched molecular architecture. In particular, we calculate the mass scaling of the radius of gyration (Rg), the hydrodynamic radius, as well as the intrinsic viscosity with the variation of the degree of branching, the length of the chains between the branched points, and the average mesh size within these nanogel particles under good solvent conditions. We find competing trends between the molecular characteristics, where an increase in mesh size or degree of branching results in the emergence of particle-like characteristics, while an increase in the chain length enhances linear polymer-like characteristics. This crossover between these limiting behaviors is also apparent in our calculation of the form factor, P(q), for these structures. Specifically, a primary scattering peak emerges, characterizing the overall nanogel particle size. Moreover, a distinct power-law regime emerges in P(q) at length scales larger than the chain size but smaller than Rg of the nanogel particle, and the Rg mass scaling exponent progressively approaches zero as the mesh size increases, the same scaling as for an infinite network of Gaussian chains. The "fuzzy sphere" model does not capture this feature, and we propose an extension to this popular model. These structural features become more pronounced for values of molecular parameters that enhance the localization of the branching segments within the nanogel particle.