Lead impaired immune function and tissue integrity in yellow catfish (Peltobargus fulvidraco) by mediating oxidative stress, inflammatory response and apoptosis

Ecotoxicol Environ Saf. 2021 Dec 15:226:112857. doi: 10.1016/j.ecoenv.2021.112857. Epub 2021 Oct 5.

Abstract

Lead (Pb) widely exists in the water environment and has severe toxic effects on aquatic organisms. The yellow catfish (Pelteobagrus fulvidraco) is one of the most important commercial species in China, and moreover, its natural populations are declining with the degradation of environmental water quality. However, little is known about the toxic effects of Pb on its immune organs. This study was performed to determine waterborne Pb exposure on bioaccumulation, histomorphology, antioxidant status, apoptotic and immune response in the head kidney and spleen of yellow catfish. Experimental fish were randomly allocated into twelve tanks (3 tanks per group), and the Pb concentrations of the four groups were 0, 5, 50, and 500 μg/L, respectively. The results reflected that the Pb bioaccumulation of the head kidney and spleen increased with increasing Pb exposure dose and time. Severe histological alterations in the head kidney and spleen were observed at concentration 500 ug/L. With increasing Pb exposure concentrations, the plasma activity of superoxide dismutase (SOD) and catalase (CAT) significantly increased after exposure 7 days and 14 days, and the levels significantly decreased after exposure 28 days. The change trend of glutathione (GSH) levels was opposite to that of SOD and CAT at corresponding exposure time. The plasma malondialdehyde (MDA) levels together with the activities of plasma alkaline phosphatase (AKP) and acid phosphatase (ACP) increased significantly with the increasing Pb concentrations. In contrast, the levels of lysozyme (LYZ), complement 3 (C3) and immunoglobulin M (IgM) decreased significantly with increasing Pb concentrations. Moreover, Pb exposure induced transcriptional upregulation of heat shock protein 70 (hsp70), metallothionein (mt), sod, cat, interleukin-10 (il-10), transforming growth factor-β (tgf-β), and tumor necrosis factor-α (tnf-α), bcl-2-associated X protein (bax), and cysteinyl aspartate specific proteinase -9 (caspase-9), genes in the head kidney and spleen tissues, while downregulating the levels of the lyz, c3, igm and B-cell lymphoma-2 (bcl-2) genes. Our data provide evidence that Pb impaired immune function and tissue integrity in yellow catfish through oxidative stress, inflammatory and apoptosis, and the results can serve as reference data to better protect water environments from Pb eco-toxicants.

Keywords: Apoptosis; Immunosuppression; Inflammatory; Oxidative stress; Pb; Pelteobagrus fulvidraco.

MeSH terms

  • Animals
  • Apoptosis
  • Catfishes* / metabolism
  • Fish Proteins / metabolism
  • Immunity, Innate
  • Lead / toxicity
  • Oxidative Stress

Substances

  • Fish Proteins
  • Lead