Cell viability of novel composite hydrogels loaded with hydroxyapatite for oral and maxillofacial bone regeneration

Odontology. 2022 Apr;110(2):296-304. doi: 10.1007/s10266-021-00662-9. Epub 2021 Oct 8.

Abstract

The development of hydrogels for maxillofacial bone regeneration holds vast potential. However, some challenges need to be addressed to further their application in clinical settings. One challenge is optimizing cell viability. To improve mechanical strength, various materials have been investigated; however, incorporation of these materials within the hydrogel network may affect cell viability. The purpose of this study was to evaluate the cell viability of novel gelatin-alginate composite hydrogels loaded with hydroxyapatite (HA) and nano-hydroxyapatite (n-HA) for maxillofacial bone regeneration. Nine different hydrogels were prepared: three loaded with 0.5%, 1%, and 3% w/v HA; three loaded with 0.25%, 0.5%, and 1% w/v n-HA; one not loaded as a control and two HA and n-HA hydrogels with a lower concentration of the EDC crosslinker. Cell viability of human osteoblasts exposed to the hydrogels as affected by the HA type, size, and concentration, as well as to the crosslinker concentration, was investigated. An Alamar Blue assay was used to evaluate cell viability in the presence of hydrogel extracts and in aqueous solutions (without the hydrogel). A qualitative model was developed for explaining cell viability and growth. Higher percentages of cell viability were observed in the hydrogels loaded with hydroxyapatite as compared with the control. The effect of HA-related parameters, i.e., particle size and concentration, was found to increase the cytotoxic effect, as expressed in lower cell viability. The most favorable composites were the n-HA hydrogels. The incorporation of n-HA in the hydrogel to form a composite seems to be a very promising approach for maxillofacial bone regeneration applications.

Keywords: Bone regeneration; Cell viability; Hydrogel; Hydroxyapatite.

MeSH terms

  • Bone Regeneration
  • Bone and Bones
  • Cell Survival
  • Durapatite* / pharmacology
  • Humans
  • Hydrogels* / pharmacology

Substances

  • Hydrogels
  • Durapatite